Sensing Static Forces with Free-Falling Nanoparticles
نویسندگان
چکیده
منابع مشابه
Muscular Forces from Static Optimization
At every joint there is a redundant set of muscle activated during movement or loading of the system. Optimization techniques are needed to evaluate individual forces in every muscle. The objective in this thesis was to use static optimization techniques to calculate individual muscle forces in the human extremities. A cost function based on a performance criterion of the involved muscular forc...
متن کاملFingernail with static and dynamic force sensing
We report on our development of sensorized fingernails for mechatronical hands. Our proposed design can capture static and dynamic interaction forces with the nail and provide basic information about the direction of the main force vector. Over the course of several iterations, we have developed a very compact working prototype that fits together with our previously developed multi cell MID-bas...
متن کاملSensing Forces in the Microworld
Holographic optical tweezers (HOT) are a versatile tool allowing for the generation of complex arrays of multiple optical traps which act as force sensors with piconewton resolution. The combination of HOT and stop-flow microfluidics integrated with a fluorescence microscope gives full spatial, chemical and visual control over the microenvironment. This allows us to investigate the dynamic prop...
متن کاملCasimir Forces between Nanoparticles and Substrates
We study the Casimir force between a nanoparticle and a substrate. We consider the interaction of metal nanoparticles with different substrates within the dipolar approximation. We study the force as a function of the distance for gold and potassium spheres, which are over a substrate of titanium dioxide, sapphire and a perfect conductor. We show that Casimir force is important in systems at th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2018
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.121.063602